Evaluating Software Architecture for Sustainability

Iffat Fatima

Vrije Universiteit Amsterdam

The 128 Ads - Problem

Design decisions

- Clean Architecture for Android App
- Use of a proprietary library (video player)

But,

- Crashes in Production
- Logs tell no story ...
- Battery drain

The 128 Ads - Discovery

Resource Leak
"Zombie Listener"

The 128 Ads - Result

- High energy use environmental
- Revenue lost <u>economic</u>
- User trust lost social issue
- Developer time lost <u>social/economic</u>
- ? An over optimized application technical

What is sustainability?

"balance of quality concerns for long term benefit"

'quality concerns'

Modifiability

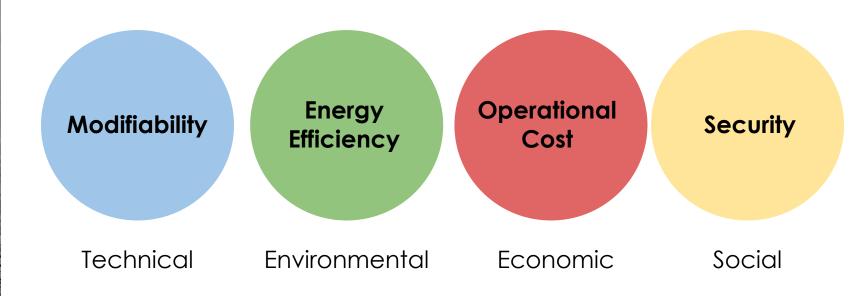
Energy Efficiency

Operational Cost

Security

Sustainability as a 'quality concern'

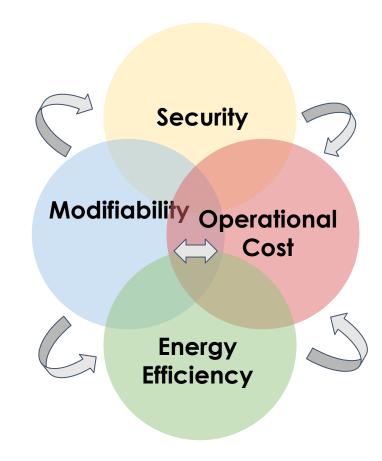
Modifiability Energy Efficiency Cost Security

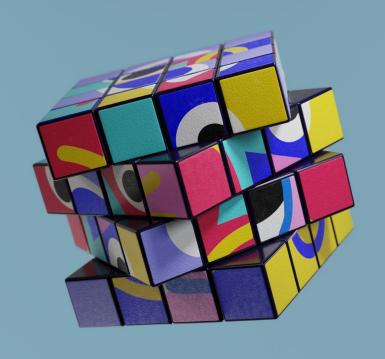


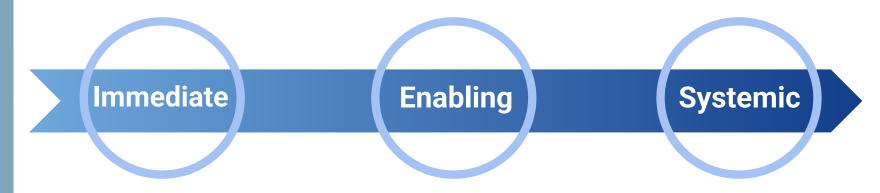
Goal

To achieve a balance between the different quality levels while achieving long term benefits.

I. Multidimensional Nature




II. Cross-cutting Nature



III. Over time Impacts

Goal

To achieve a balance with long term benefits.

•

•

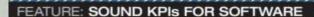
•

•

Holistic evaluation of software architecture

Case Studies

- Learning Management System for education at a Dutch university
- Multi-model system for energy modeling for Dutch public sector
- Multi-tenant SAAS application for real estate sector in the Netherlands


Evaluation Goal

Answer: Sustainability

But what does that really mean for **YOUR** organization?

Key Performance Indicators

- Model
- Template
- Checklist

Providing Guidance to Software Practitioners

A Framework for Creating Key Performance Indicators

Iffat Fatima[®], Markus Funke[®], and Patricia Lago[®], Vrije Universiteit Amsterdam

// We propose a framework in the form of a model, an associated template, and a checklist to provide guidance to practitioners for creating sound key performance indicators, examining their creation through four case studies in the context of software systems in two organizations. //

KPI Example

Availability

 $(MTBF / (MTBF + MTTR)) \times 100$

Availability

=

(No. of successful transactions / No. of total transactions) x 100

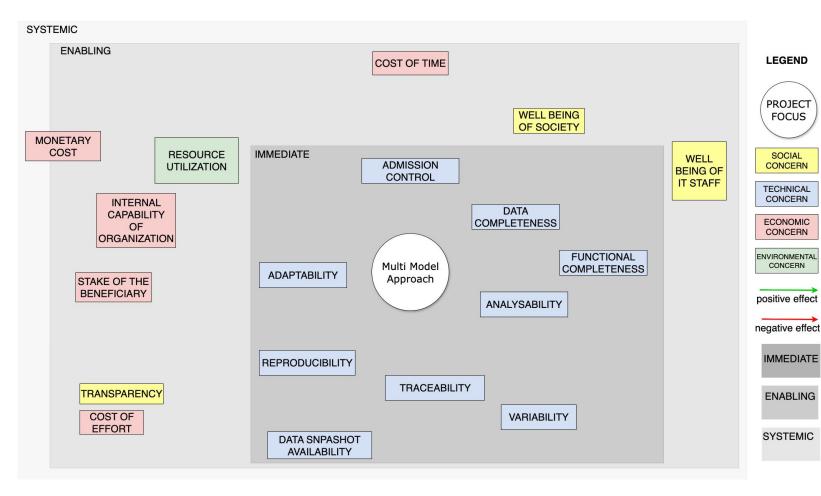
Exploring the Problem Space

Elements of the SAF Toolkit

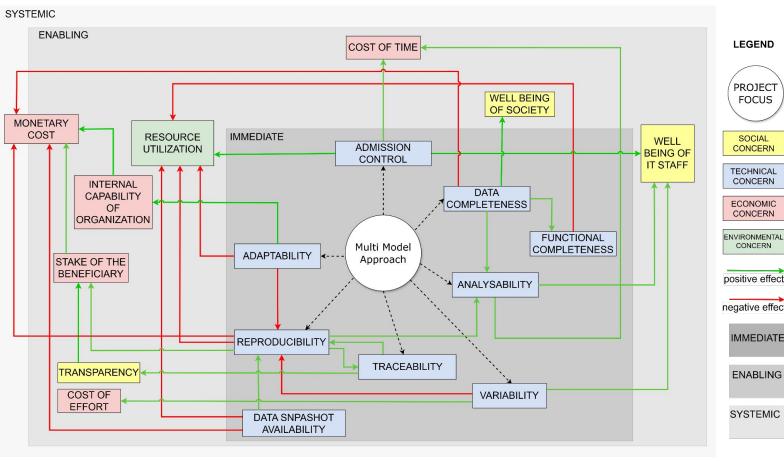
1. Decision Maps

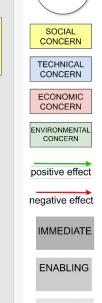
Look out for the workshop tomorrow

09:00 AM - 12:00 PM


Workshop // Architecting for Sustainability with the SAF Toolkit (ENG)

By Markus Funke / Ph.D. Candidate in Software Sustainability at Vrije Universiteit


Exploring the Problem Space



Trade-off information

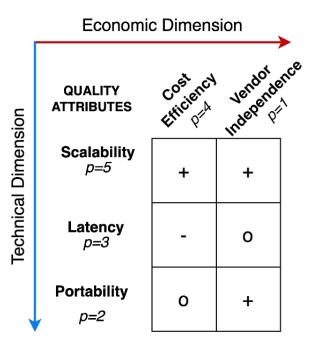
Example: DMatrix Multi Model

Quality Attributes	Economic	Cost of Time	Cost of Effort	Monetary Cost	Increasing Internal Capability	Stake of beneficiary
Technical	Priorities	0.10	0.10	0.10	0.10	0.10
Adaptability	1.00				1	
Variability	1.00		1			
Concurrency	0.78	1				
Data Completeness	0.78			-1		
Analysability	0.33	1				
Reproducibility	0.33			-1		1
Data Snapshot availability	0.10			-1		

Prioritization of QAs

- What is the **importance** of quality concern towards functioning of the system?
- 2. What is the **risk** if a quality concern is not satisfied?

Priority = f (importance, risk)



Trade-offs between quality concerns

(a) SERVERLESS

QUALITY COST TOTAL VERIFICATION TO SCALABILITY P=5 + Latency p=3 O O Portability p=2 O -

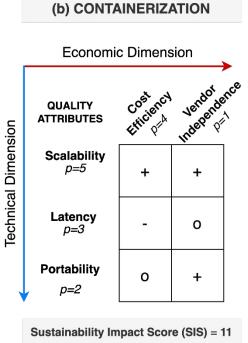
(b) CONTAINERIZATION

Sustainability Impact Score

$$\mathbf{SIS}_{dim1,dim2} = \sum_{\substack{i=1\\j=1}}^{n,m} (\mathbf{Priority}_{dim1_i} + \mathbf{Priority}_{dim2_j}) \times \mathbf{Impact}_{ij}$$

where n=total QAs per dimension dim1, m=total QAs per dimension dim2 $\dim \in \{Ec, En, S, T\}$, $impact = \{+1, -1, 0\}$

A higher score indicates a relatively higher positive impact between dimensions


Sustainability Impact Score (SIS) enables observation of inter-dimension trade-offs.

Trade-offs between quality concerns

(a) SERVERLESS **Economic Dimension** QUALITY **ATTRIBUTES Technical Dimension** Scalability p=5 Latency 0 0 p=3 **Portability** 0 p=2 Sustainability Impact Score (SIS) = 0

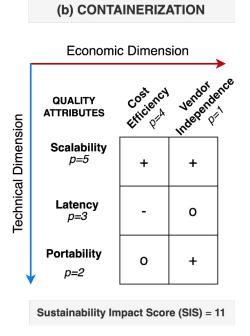
How to compare the SIS values?

- No available standard/benchmark
- No upper or lower limits

So,

We ask the stakeholders:

What is the optimal best case scenario, <u>realistically</u>?



Optimal Score

Economic Dimension QUALITY ATTRIBUTES Scalability p=5 + Latency p=3 0 0 Portability p=2 0 Sustainability Impact Score (SIS) = 0

(c) Theoretical Optimal

Sustainability Impact Score (SIS) = 31

Sustainability Impact Score

	Sustainability Impact Score (SIS)				
Architectural Approach	Technical – Economic	Technical – Environmental	Technical – Social	Social – Economic	
Single Model Approach	0.00	28.41	0.00	0.00	
Multi Model Approach	76.51	0.00	100.00	100.00	
Theoretical Optimal	100.00	100.00	100.00	100.00	

How does SIS help in decision making?

Scenario: Learning Management System used by 2 universities

Design Option 1: Separate production instances

Design Option 2: Shared production instance

In place				
SIS	Design Option 1 (2 prod. instances)	Design Option 2 (1 prod. instances)		
Technical, Economic	89	67		
Technical, Environmental	2	13		
Technical, Social	87	87		

Decision

I. Fatima and P. Lago, 'Software Architecture Assessment for Sustainability: A Case Study', in Software Architecture: 18th European Conference, ECSA 2024, Luxembourg City, Luxembourg, September 3–6, 2024, Proceedings, Luxembourg City, Luxembourg, 2024, pp. 233–249.

Trade-offs between dimensions

Decision Currently In place

SIS	Design Option 1 (2 prod. instances)	Design Option 2 (1 prod. instances)
Technical, Economic	89	67
Technical, Environmental	2	13
Technical, Social	87	87

Design Option 1

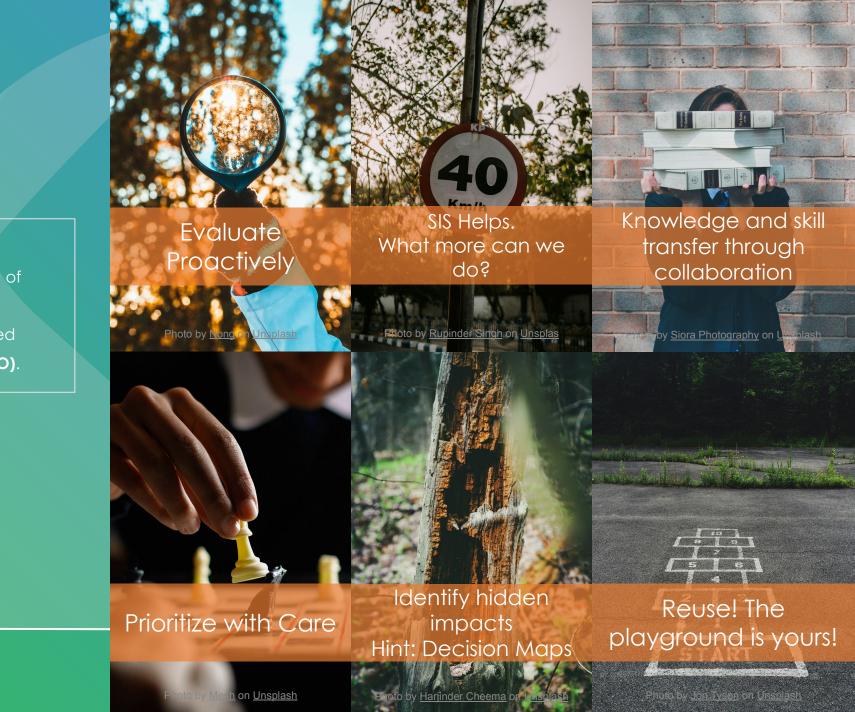
- → Supports Economic sustainability
 - ◆ in terms of saving maintenance and portability costs
- → Hinders Environmental Sustainability
 - by using more resources

Questions to ask while designing your next architecture

- 1. How do we define quality X for OUR system?
- 2. How important is quality X for this feature?
- 3. What is the impact NOW and in X YEARS?
 - the economy.
- 4. What is the value of impact? Is the trade-off worth compromising on the long term goal?

- 1. Navigating the human element
- 2. Setting limits to the scope of impacts
- 3. Avoiding getting lost in numbers
- 4. Always pivot to the goal and context
- 5. Rethink priorities
- 6. We need benchmarking!

Thank you.


i.fatima@vu.nl

This artifact is part of the project **SustainableCloud** (OCENW.M20.243) of the research programme Open

Competition which is (partly) financed by the **Dutch Research Council (NWO)**.

